Problem Statement

Collect a parallel corpus of English - Hindi, or other near similar Indian languages.Determined by the
quality sentence pairs using statistical machine translation (Moses, phrase-based)
Use BLEU score, METEOR, TER and WER measures to access the quality of MT

submit your results with quality scores, one per line, corresponding to the sentence pairs.

Introduction

GIZA++ steps:

Installation

Parallel Corpus

2.Create parallel corpus with tokenized space
3. Align words

Align Words

Navigate to the c1z2++-v2 directory and run the following which will generate the vocabulary (. vcb)
and sentences files (.snt):

./plain2snt.out ../parallel-n/IITB.en-hi.en ../parallel-n/IITB.en-hi.hi

extract the co-occurrences by running the following:

./snt2cooc.out ../parallel-n/IITB.en-hi.en.vcb ../parallel-n/1ITB.en-hi.hi.vcb
../parallel-n/IITB.en-hi.en_lITB.en-hi.hi.snt > ../parallel-n/corp.cooc

Run GIZA++

JGIZA++ -S ../parallel-n/lITB.en-hi.en.vcb -T ../parallel-n/lITB.en-hi.hi.vch -C
../parallel-n/lIITB.en-hi.en_IITB.en-hi.hi.snt -CoocurrenceFile ../parallel-n/corp.cooc -outputpath
../parallel-n/

Output

2022-10-10.023859.ubuntu.A3. final: contains sentence pairs and word alignments from the
source language (Hindi) into the target language (English) using Viterbi Alignment, which is the most
probable alignment (the one that maximizes the alignment probability). One particular sentence pair
of this file looks like the following:

Sentence pair (301) source length 2 target length 3 alignment score : 2.37923e-05
g faavor g1
NULL ({}) No ({ 1 3 }) description ({2})

Sentence pair (355) source length 5 target length 5 alignment score : 4.10065e-08
NULL ({}) An ({ 1}) interactive ({ 2 }) Python ({ 3 }) accessibility ({ 4 }) explorer ({ 5})

The first line shows the length (number of words) of the source (Irish) and target (English)
sentences, along with the Viterbi alignment score.

The second line is the target sentence, and the third line is the source sentence annotated with
alignment information. Each source word is annotated with the set of indices of target words that
are aligned to that source word. Note that in IBM Models assume that one target word is aligned at
most one source word.

® 2020-04-01.030523.sina.actual.ti.final: Thisis the final inverse T-tables (lexical
translation probability) trained by the model. Lexical translation probability « (¢ | £) is the
probability that word f in the source language (Irish) is translated to word « in the target
language (Target). Since this is the inverse T-tables, it contains « (r <) . The following is a
sample of the file:

file names of the TM tables
Notes:
1. TTable and InversTTable are expected to use word IDs not

strings (Giza produces both, whereby the *.actual.* files

use strings and are THE WRONG CHOICE.

2. FZeroWords, on the other hand, is a simple list of strings

with one word per line. This file is typically edited

#

manually. Hoeever, this one listed here is generated by GIZA

TTable = 2022-10-10.023859.ubuntu.t3.final
InverseTTable = 2022-10-10.023859.ubuntu.ti.final
NTable = 2022-10-10.023859.ubuntu.n3.final

D3Table = 2022-10-10.023859.ubuntu.d3.final

D4Table = 2022-10-10.023859.ubuntu.D4.final

PZero = 2022-10-10.023859.ubuntu.p0_3.final
Source.vcb = ../parallel-n/IITB.en-hi.en.vcb

Target.veb = ../parallel-n/IITB.en-hi.hi.vcb
Source.classes = ../parallel-n/IITB.en-hi.en.vcb.classes
Target.classes = ../parallel-n/IITB.en-hi.hi.vcb.classes
FZeroWords =2022-10-10.023859.ubuntu.fe0_3.final

Evaluation

BLEU Score
BLEU: 13.08
Precision x brevity: 14.97 x 87.37
Type 1-gram 2-gram 3-gram 4-gram
Individual 40.85 19.25 1011 6.32
Cumulative 35.69 2450 17.44 13.08

Export data m

=]

304
20

500 1,000 1.500 2,000 2,500 3,000 3,500 4,000 4,500

5,000

WER

Word error rate (WER), one of the first automatic evaluation metrics applied to statistical
machine translation, is borrowed from speech recognition and takes word order into account. It
employs the Levenshtein distance, which is defined as the minimum number of editing steps
insertions, deletions, and substitutions needed to match two sequences.

substitutions + insertions + deletions
WER =

reference-length

Used python library : https://pypi.ora/project/jiwer/

https://pypi.org/project/jiwer/

Code:https://gist.githubusercontent.com/ymoslem/f1783b566b3a17b4107a34198daeebab/raw/2
98a701d1ea945b3ab5d9fc4044e6c4eeccabaf9/sentence-wer.py

METEOR

METEOR incorporates the use of stemming and synonyms by first matching the surface forms
of the words, and then backing off to stems and finally semantic classes. METEOR, incorporates
a stronger emphasis on recall.

Used Library: NLTK

Code:https://gist.githubusercontent.com/ymoslem/5174469f88d9f1fb1660121a663bb87f/raw/8a
98feb6670b1c6833bdb0e503fa50ead09f10ebe/sentence-meteor.py

TER

Translation Error Rate, One disadvantage of the Levenshtein distance is that mismatches in
word order require the deletion and re-insertion of the misplaced words. We may remedy this by
adding an editing step that allows the movement of word sequences from one part of the output
to another. This is something a human post-editor would do with the cut-and-paste function of

a word processor.Evaluation metrics based on such editing steps have been proposed,
including translation error rate (TER).

Code: https://github.com/jhclark/tercom

https://gist.githubusercontent.com/ymoslem/f1783b566b3a17b4107a34198daee6a6/raw/298a701d1ea945b3ab5d9fc4044e6c4eecca5af9/sentence-wer.py
https://gist.githubusercontent.com/ymoslem/f1783b566b3a17b4107a34198daee6a6/raw/298a701d1ea945b3ab5d9fc4044e6c4eecca5af9/sentence-wer.py
https://gist.githubusercontent.com/ymoslem/5174469f88d9f1fb1660121a663bb87f/raw/8a98fe6670b1c6833bdb0e503fa50ead09f10ebe/sentence-meteor.py
https://gist.githubusercontent.com/ymoslem/5174469f88d9f1fb1660121a663bb87f/raw/8a98fe6670b1c6833bdb0e503fa50ead09f10ebe/sentence-meteor.py
https://github.com/jhclark/tercom

